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Abstract. In the present work we describe a method which allows the incorporation of surface
tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell,
the surface tension effects are incorporated into the free surface boundary conditions through
the computation of the capillary pressure. The required curvature is estimated by fitting a
least square circle to the free surface using the tracking particles in the cell and in its close
neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local
4-point stencil which is mass conservative. An efficient implementation is obtained through a
dual representation of the cell data, using both a matrix representation, for ease at identifying
neighbouring cells, and also a tree data structure, which permits the representation of specific
groups of cells with additional information pertaining to that group. The resulting code is shown
to be robust, and to produce accurate results when compared with exact solutions of selected
fluid dynamic problems involving surface tension.
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1. INTRODUCTION

Surface tension effects are relevant to many industrial problems, for example, coating,
paint drying and moving drops occurring for instance in ink jet printing. GENSMAC2D is an
updated version of the GENSMAC (Tome & McKee, 1994) code designed for simulating two
dimensional free surface flows and was motivated by the need to simulate container filling in the
food industry. Food stuff tends to be a high viscosity, usually shear-thinning, fluid and as such
surface tension could be disregarded without any serious loss of accuracy. In the present work
we describe a method which allows the incorporation of surface tension into the GENSMAC2D



code, enabling the application of the code to a much larger variety of industrial problems.
GENSMAC2D system simulates incompressible free surface flow by solving the Navier-Stokes
equations together with mass conservation which in non-dimensional form can be written as
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whereRe = UL=� andFr = U=
p
Lg are the Reynolds and Froude numbers,U e L are

reference scales for the velocity and length,g is the magnitude of the gravity acceleration,g is
the unitary gravitational field,u; p; andt are the non-dimensional velocity, pressure, and time.

These equations are solved as follows:
For a given timet0, let ~p(x; t0) be a pressure distribution that satisfies the free-surface

boundary conditions, andu(x; t0), the solution of Eq. (1). The intermediate velocity~u(x; t),
t = t0 + �t, is then computed using the equation

@~u

@t
+ (u � r)u = �r~p+

1

Re
r2u +

1

F 2
r

g: (3)

The final velocity of the fluid att = t0 + �t is given by

u(x; t) = ~u(x; t)�r (x; t) (4)

where

r2 (x; t) = r � ~u(x;t): (5)

Once (x; t) is computed using Eq. (5), we can compute the corrected velocityu(x; t)
using Eq. (4) and the new pressure

p(x; t) = ~p(x; t) +
@ (x; t)

@t
: (6)

Following this procedure, the velocityu(x; t) at timet = t0 + �t satisfiesr � u(x; t) = 0.
For the solution of equations Eq. (3) and Eq. (4), appropriate boundary conditions are

applied. For solid walls null velocities are enforced. At the free surface, the boundary conditions
need to satisfy mass conservation. The Poisson equation Eq. (5) is solved satisfying Dirichlet
boundary conditions at the free surface and Neumann at the solid boundaries.

At the free surface the boundary conditions for pressure and velocity are given by
(T:n):m = 0 and (T:n):n = pcap, wheren andm are the normal and tangential vectors to
the free surface.T is the stress tensor andpcap = �� is the capillary pressure, originating from
the effects of surface tension�, and the curvature�. The computation ofpcap, � and� will be
discussed in more detail in the following sections.

Similarly to MAC (Welchet al., 1965), SMAC (Amsden & Harlow, 1970), and GENSMAC
(Tome & McKee, 1994) methods, in GENSMAC2D, the equations Eqs. (3)–(6) are discretized
by finite differences in a staggered grid. However, in GENSMAC2D, the fluid domain is tracked
using particles only at the free surface. Using these particles, the free surface is approximated
by a piecewise linear surface and represented by the “halfedge2d” structure. The flow properties
are represented in a grid of square cells which are classified as: [B] (Boundary) if more than
half of its volume belongs to a rigid boundary; [I] (Inflow) if more than half of its volume
belongs to an inflow boundary; [E] (Empty) if it does not contain fluid nor more than half of its
volume belongs to the fluid inflow or a rigid boundary; [S] (Surface) if it contains part of the
free surface and it is in contact with aE cell; and [F] (Full) if it contains fluid, and is not in
contact withE cells.
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Figure 1: Domain, grid and cells.

Figure 1 shows an example of the cell structure of a flow at a given time. In this figure, the
empty cells have not been marked.

In the computation of the free surface boundary conditions in eachS cell, we need to have
approximations for the surface normals. These are usually obtained according to the classifica-
tion of the neighboring cells, as follows:n = (1; 0) if only the right neighbour isE; n = (�1; 0)
if only the left neighbour isE; n = (0; 1) if only the top neighbour isE; n = (0;�1) if only
the bottom neighbour isE; n = (

p
2

2
;
p
2

2
) if only right and top neighbour areE; and so on.

For the implementation of the surface tension effects it is also necessary to estimate the
surface curvature at the center of each surface cell, and to take into account sub-cell surface
tension effects. In the following sections we describe the methodology employed in the imple-
mentation of the surface tension effects. This methodology results in a better estimate of the
surface normal. This normal can be used to improve the accuracy of the approximation of the
free surface boundary conditions employed by the code.

2. SURFACE TENSION EFFECTS

The computation of the surface tension is performed at two levels: first at sub-grid level,
where small undulations on the free surface are eliminated, and second at cell level, where the
free surface curvature at the center of eachS cell is approximated. This approximation will be
used in the implementation of the pressure boundary condition at the free surface.

2.1 Elimination of small undulations

In many applications, in particular when the Reynolds number is high (larger than 50),
small undulation may appear at the free surface due to variations in the velocity field from cell
to cell, and be amplified in regions where the surface area is shrinking. Figure 2 shows a sketch
of the problem. These undulations are frequently much smaller than a cell, and usually they are
not present in laboratory experiments because they are physically removed by a combination of
surface tension and viscous effects.

A numerical surface tension implementation that acts at the cell level cannot take into
account these sub-cell undulations, and correctly suppress them.

There are several techniques that can be used to suppress these unphysical undulations, such
as substitution of the position of each particle in the surface by the average of its neighbours,
among others. However, in fluid flow simulations it is important that the applied technique does
not change the mass of the flow (and hence the volume in the case of incompressible flow).



Figure 2: Small high frequency undulations in the free surface.

In the technique implemented in GENSMAC2D, denominated Trapezoidal Sub-grid Un-
dulations Removal (TSUR), the position of two adjacent particles is changed simultaneously, in
such a way that the area delimited by these two particles and its neighbours does not change.

Consider four consecutive particles at the free surface, given by the pointsxi;xi+1;xi+2,
andxi+3, as shown in Fig. 3. Particlesxi+1 andxi+2 will be repositioned in such a way that
L1=L2=L3, h1 = h2, and the final area of the polygon formed by the pointsxi;xi+1;xi+2, and
xi+3 be equal to the area of the same polygon before modification.

Xi

Xi+2
Xi+3

Xi+1

(a) Before

Xi

Xi+1

Xi+2
Xi+3

L 1

L 2

L 31
2

h
h

(b) After

Figure 3: Trapezoidal Sub-grid Undulations Removal (TSUR) method.

This method is applied to all the adjacent pairs of points on the free surface. However,
particles are allowed to move only when their destination cells are the same that their original
cells, so that cell classification is not modified.

2.2 Curvature approximation

The curvature of the free surface in a surface cell is approximated by the arc of circum-
ference that best fits the surface points in that cell and its neighbour, using the least squares
method.

The circumference equation is(x�x0)2+(y�y0)2 = r2, where(x0; y0) are the coordinates
of the center, andr is the radius that need to be determined. This expression can be written as
2ax+ 2by + c = x2 + y2, wherea = x0, b = y0, andc = r2 � x20 � y20.

To compute the approximation of the curvature we need to determinea; b andc such that the
surfaceS approximates the free surface. To find this approximation we consider the particles
xi = (xi; yi)

t, i = 1; : : : ; m, at the surface in the neighbourhood of the cellS. Figure 4
illustrates the technique.

For eachxi we have the equation2axi + 2byi + c = x2
i
+ y2

i
, i = 1; : : : ; m. The least

square approximation can be obtanined solving the normal equations:
0
B@
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Figure 4: Approximation of the surface by the least squares method.
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The value of the curvature is then given by� = 1

r
= (c+ a2 + b2)�

1

2 .
In case the system Eq. (7) is singular, a best fit line is computed usingAt �A,At �B,At �C,

Bt �B, andBt � C, and the curvature is set to zero.
This procedure determines� but for the signal, which can be determined comparing the

normal at the center of the cell�c determined based on neighbouring cells classification, and the
normal of the circumference at the point closest to the center of the cell�s. In case�t

c
� �s > 0

the surface is convex.

3. IMPLEMENTATION

GENSMAC2D uses two type of representation for cell data: a matrix representation, that
allows for representing all kinds of cells, that is efficient in obtaining information about neigh-
bour cells; and a tree representation, which allows for representing specific cell groups with
complementary information.

To illustrate the importance of the tree representation let us consider that for eachB
(Boundary) cell in contact with aF (Full) or S (Surface) cell, it is necessary to compute the
intersection of some segments with the surface that defines the rigid boundary. This computa-
tion is expensive, but does not need to be repeated at each time step if the rigid boundary is not
moving. Therefore, in this case, GENSMAC2D performs these computations only once, and
stores the results in a tree data structure for later usage.

The tree data representation can also store all the data required for the computation of the
curvature. Each node stores a matrix (calledcoef ) with dimension4 � 4, where the first three
lines contain the matrix and the independent vector of Eq. (7), and in the last line are stored the
number of points (particles) used, the normal vector at the center of the cell, and the value of
the curvature. The normal vector at the center of the cell, first computed according to section
1, is used to determine the sign of the curvature, and it is recomputed using the least squares
approach at the point of the circle closer to the center of the cell.

At each time step,S cells are redefined, and this matrix is updated:coef [i][j] = 0 (i =
1; : : : ; 3 andj = 1; : : : ; 4), coef [4][1] = 0 (number of particles)coef [4][2] = �xc, coef [4][3] =
�yc andcoef [4][4] = 0 (curvature).



Routine CURVATURE is described in the following steps:

1. Do for each particle:
2. Do for each cell whose distance from its center to the particle is less than a

prescribed value:
3. Compute:

a = 2xi, b = 2yi, c = 1, y = x2
i
+ y2

i

4. Update matrixcoef :
coef [1][1] = coef [1][1] + a2, coef [1][2] = coef [1][2] + ab,
coef [1][3] = coef [1][3] + ac, coef [1][4] = coef [1][4] + ay,
coef [2][2] = coef [2][2] + b2, coef [2][3] = coef [2][3] + bc,
coef [2][4] = coef [2][4] + by, coef [3][3] = coef [3][3] + c2,
coef [3][4] = coef [3][4] + cy, coef [4][1] = coef [4][1] + 1

5. End Do
6. End Do
7. Do for each cellS:
8. Solve linear system Eq.(7)
9. Compute� and store incoef [4][4]
10. Compute and storecoef [4][2] = �xc, andcoef [4][3] = �yc
11. End Do

4. VALIDATION OF THE CODE

A number of tests were performed to validate the code and to assess its robustness and pre-
cision. In this section some representative results will be presented. In the following subsection
the numerical results obtained in this code will be compared with analytical solutions in the
case of the sessile and pendant drop, and for the problem of the oscillating drop. Finally, com-
plex free surface flow simulations show the effectiveness of the subgrid undulation remotion
algorithm described in section 2.1.

4.1 Sessile and pendant drops

To validate the computation of the capillary pressure using the method described in section
2.2, and show the robustness of the method we simulated a sessile and a pendant drops. The
semi-analytical solutions were obtained by numerical integration of the equations for the po-
sition of the interface using a fourth-order Runge-Kutta method, and they can be regarded as
being very accurate.

Table 1. Comparison of numerical and analytical predictions of the pressure at the meniscus
for the sessile and pendant drops.

Problem pnumerical � (L=�) panalytical � (L=�) Relative Error
Sessile 1.602 1.593 0.59%
Pendant 1.492 1.474 1.20%

A quantitative comparison of the two results can be obtained comparing the numerical
and the analytical predicted value of the pressure at the meniscus. Results of this comparison,
summarized in table 1 and fig. 5, show a very good agreement between the analytical and
numerical values.
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Figure 5: Comparison between numerical solution (dashed line), and analytical solution

(solid line).

4.2 Oscillation of a drop

The previous tests proved the accuracy of the capillary pressure computations in hydrostatic
conditions. To show the correct dynamical behaviour of the code we solved the problem of the
oscillating drop, which has an analytical solution for the case of infinitesimal perturbations.
Solution for this problem in the case of the axisymmetric bubble can be found in Lamb (1932),
and has been used by other authors (Agresaret al., 1998) to validate both the two-dimensional
and the axisymmetric cases. The parameters for these tests were: the density� = 1�103Kg=m3,
the viscosity� = 1 � 10�6 m2=s, the undisturbed radius of the dropR = 1 � 10�2 m, the
amplitude of the perturbation,A = 0:3 � 10�3 m. Contrary to the case were the external flow
is also computed, in these simulations the domain of computation can be chosen to be barely
larger than the drop itself. Therefore a domain with�1:1 � 10�2 m � x � 1:1 � 10�2 m and
�1:1 � 10�2 m � y � 1:1 � 10�2 m discretized using a uniform50� 50 mesh was adopted for
these tests. Table 1 shows the comparison of numerical and the analytical values of the period
of oscillation of the drop for various values of surface tension�. The excellent agreement
between these values shows the correctness of the code and the high accuracy obtainable using
the proposed approach.

Table 2. Comparison of numerical and analytical predictions of the period of oscillation of the
oscillating drop.

� (N=m) �numerical (s) �analytical (s) Relative Error
1 � 10�3 2.584 2.565 0.77%
2 � 10�3 1.828 1.814 0.77%
5 � 10�3 1.156 1.147 0.75%
10 � 10�3 0.8172 0.8111 0.74%

4.3 Subgrid undulation removal

In the previous tests the viscous and surface tension effects at the cell level were sufficient to
prevent the occurrence of undulations at the subgrid level. However, in cases of higher Reynolds
flows, and regions with strong surface area reduction, subgrid undulation may occour and cause



a degradation of the overall precision of the computation, interfering with the computation of
the curvature. The effect of applying the algorithm described in section 1.1 for the suppression
of undulations can be seen in the following test.

In this test, a complex free surface flow simulation of the filling of a container is performed.
The parameters for these tests were: the domain is0:0m � x � 0:05m, 0:0m � y � 0:06m,
and it is discretized using a uniform50 � 60 (coarse grid) mesh and100 � 120 (refined grid)
mesh; the density is� = 1 Kg=m3; the viscosity is� = 0:001 m2=s; the surface tension is
� = 0:01 N=m; the inflow dimension is0:004 m; the inflow velocity is0:5 m=s; and the
internal dimensions of the container are width= 0:044 m and height= 0:052m. Figure 6–
9 show a comparison of the results obtained in several simulations with different resolutions,
surface tension, and subgrid undulation removal settings.

Figure 6: (Left) Comparison of coarse grid (dashed line) with re�ned grid (dotted line),

both with neither surface tension nor TSUR. (Right) Detail of the surface.

Figure 7: (Left) Comparison of coarse grid without surface tension or TSUR (dashed

line), with course grid without surface tension but with TSUR (dotted line), and course

grid with both surface tension and TSUR (solid line). (Right) Detail of the surface.

Figure 6 shows the case of a coarse and a refined grid without surface tension or subgrid
undulation removal. The finer grid shows much smaller undulations than the coarse grid, indi-
cating that the undulations observed in the coarse grid are due to numerical errors that can be
reduced by grid refinement.

Figure 7 shows results from three simulations in the coarse grid. The dashed curve cor-
responds to the case in which no surface tension nor TSUR were applied. The dotted line
corresponds to the case with TSUR only, and the solid line corresponds to the case with surface



Figure 8: (Left) Comparison of coarse grid with both surface tension and TSUR (dashed

line), with course grid with surface tension but without TSUR (dotted line). (Right)

Detail of the surface.

Figure 9: Comparison of re�ned grid without surface tension or TSUR (dashed line),

with re�ned grid with surface tension and TSUR (dotted line), and with coarse grid with

surface tension and TSUR (solid line). (Right) Detail of the surface.

tension and TSUR. The undulations observed in the dashed line are completely removed by us-
ing the TSUR method. Also, it can be seen that TSUR does not introduce a significant surface
tension effect on the large scale undulations, as can be observed comparing it with the case with
surface tension (solid line).

Figure 8 shows a comparison of two simulations with surface tension, one without TSUR
(dashed line), and the other with TSUR (dotted line). It can be observed that the result without
TSUR is severely distorted due to errors introduced by the undulations in the computation of
the surface tension.

Figure 9 shows a comparison of three simulations, one without surface tension or TSUR
in the finer grid (dashed line), one with both surface tension and TSUR in the finer grid (dotted
line), and one with both surface tension and TSUR in the coarse grid. We observe a close
agreement between the coarse and the fine grid solutions.

These comparisons show that the algorithm for subgrid undulation removal can be benefi-
cial because it helps in obtaining physically correct results in cases where the resolution would
otherwise be insufficient to produce accurate results. The accuracy of the surface tracking is po-
tentially much higher than the cell spacing, and to account for small scale surface tension effects
explicitly by the surface tension at the cell level would require a prohibitively high refinement of
the grid. Therefore, the subgrid undulation removal algorithm can result in substancial savings
in terms of required computational resources in complex free surface flow simulations.



5. CONCLUSIONS

In the present work we describe a method which allows the incorporation of surface tension
into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the
surface tension effects were incorporated into the free surface boundary conditions through the
computation of the capillary pressure. The required curvature was estimated by fitting a least
square circle to the free surface using the tracking particles in the cell and in its close neighbors.
This approximation resulted in improved surface normal estimates which can be used in a more
accurate implementation of the boundary conditions. On a sub-cell scale, short wavelength
perturbations were filtered out using a local 4-point stencil which is mass conservative. The
technique consist of modifying the positions of the two “internal” particles of the stencil such
that the surface length and curvature are minimized, while still preserving volume. An efficient
implementation is obtained through a dual representation of the cell data, using both a matrix
representation, for ease at identifying neighbouring cells, and also a tree data structure, which
permits the representation of specific groups of cells with additional information pertaining to
that group. The resulting code was shown to be robust, and to produce accurate results when
compared with exact solutions of selected fluid dynamic problems involving surface tension. In
particular, the sessile drop, the pendant drop, and the oscillating drop were simulated.

Comparisons between low and high resolution simulations with and without Trapezoidal
Surface Undulation Removal (TSUR), showed that the TSUR algorithm can be beneficial. It
allows one to obtain physically correct results in cases where the resolution would otherwise be
insufficient to produce accurate results. In addition, it can result in significant savings in terms
of required computational resources in complex free surface flow simulations.
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